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Abstract

Let Hn be an n-dimensional Haar subspace of X ¼ CR½a; b� and let Hn�1 be a Haar subspace

of Hn of dimension n � 1: In this note we show (Theorem 6) that if the norm of a minimal

projection from Hn onto Hn�1 is greater than 1, then this projection is an interpolating

projection. This is a surprising result in comparison with Cheney and Morris (J. Reine Angew.

Math. 270 (1974) 61 (see also (Lecture Notes in Mathematics, Vol. 1449, Springer, Berlin,

Heilderberg, New York, 1990, Corollary III.2.12, p. 104) which shows that there is no

interpolating minimal projection from C½a; b� onto the space of polynomials of degree pn;
ðnX2Þ: Moreover, this minimal projection is unique (Theorem 9). In particular, Theorem 6

holds for polynomial spaces, generalizing a result of Prophet [(J. Approx. Theory 85 (1996)

27), Theorem 2.1].
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1. The results

Let X be a Banach space and let YCX be a closed, linear subspace. An operator
PALðX ;YÞ is called a projection if PjY ¼ idY : The set of all projections from X onto
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Y will be denoted by PðX ;YÞ: A projection PoAPðX ;YÞ is called minimal if

jjPojj ¼ lðY ;XÞ ¼ inffjjPjj : PAPðX ;YÞg:

The constant lðY ;XÞ is called the relative projection constant. It is worth noting that
there exists a large number of papers concerning minimal projections. Mainly the
problems of existence [12,15], uniqueness [11,13,25,32,33], characterization of one-
complemented subspaces [1,2,26,30,31], concrete formulas for minimal projections
[3–7,10,12,21,22,24,29,34], estimates of the relative projection constants
[5,14,19,23,28,31,35], construction of spaces with large relative projection constants
[4,5,16–20], as well as the problems connected with shape-preserving projections [8,9]
were considered. For basic information concerning this topic the reader is referred to
[27].

The aim of this note is to generalize [29, Theorem 2.1] from the polynomial case to
the case of Haar subspaces. More precisely, let Hn be an n-dimensional Haar
subspace of X ¼ CR½a; b� and Hn�1CHn be an ðn � 1Þ-dimensional Haar space. Let

fhjgn
j¼1CHn be a fixed basis of Hn such that Hn�1 ¼ ½h1; h2;y; hn�1�: In this note we

show that for any Hn;Hn�1 as above if lðHn�1;HnÞ41; then a minimal projection
from Hn onto Hn�1 is an interpolating projection (Theorem 6). Moreover there is a
unique minimal projection in this case (Theorem 9). We start with two well known
lemmas. For sake of completeness the proofs will be included.

Lemma 1. Let X be a Banach space and let YCX be a closed subspace. Suppose that

PAPðX ;YÞ: Then jjPjj ¼ 1; if and only if for any xAXðId � PÞx is the best

approximation to x in V ¼ kerðPÞ:

Proof. Take a linear projection P from X onto Y of norm one. Then Id � P is a
linear projection onto V ¼ kerðPÞ: Take xAX and vAV : Then

jjx � ðId � PÞxjj ¼ jjx � v � ðId � PÞðx � vÞjjpjjPjj jjx � vjjpjjx � vjj:

Taking infimum over vAV we get that distðx;VÞ ¼ jjx � ðId � PÞxjj:
To prove a converse, suppose jjPjj41: Then for some xAX of norm one

jjx � ðId � PÞxjj ¼ jjPxjj4jjxjj ¼ jjx � 0jj;

a contradiction. &

Lemma 2. Let X be a normed space and let fAX �
\f0g: Set Y ¼ kerðf Þ: Then for any

PAPðX ;YÞ there exists yPAX ; f ðyPÞ ¼ 1 such that

Px ¼ x � f ðxÞyP

for any xAX :

Proof. Let PAPðX ;Y Þ: Take yPAkerðPÞ such that f ðyPÞ ¼ 1: It is clear that for any
xAX

Px ¼ x � f ðxÞyP:
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Conversely, for any yAX satisfying f ðyÞ ¼ 1 the operator Q ¼ Id � f ð�ÞA
PðX ;YÞ: &

Theorem 3 (see Odyniec and Lewicki [27, p. 102]). Let X be a finite-dimensional real

Banach space and let LðXÞ denote the space of all linear operators from X into X :
Assume VCLðXÞ is a linear subspace and LALðX Þ\V: Take VoAV and define

EðL � VoÞ ¼ fðx; x�ÞASX � extðSX � Þ : x�ðL � VoÞx ¼ jjL � Vojj:

Then Vo is the best approximation to L in V if and only if for any VAV there exists

ðx; x�ÞAEðL � VoÞ such that

x�ðVxÞp0:

We include the following two useful lemmas about Haar spaces. These basic facts
perhaps appear elsewhere but we present them with proofs for sake of completeness.

Lemma 4. Let YCX be an n-dimensional Haar space. Let yAY \f0g have n � 1
distinct zeros aps1os2o?osn�1pb: Then there exists e40 such that for any

siAða; bÞ we have

½si � e; si þ e�-½sj � e; sj þ e� ¼ | ð1Þ

for iaj and

yðtÞyðsÞo0 ð2Þ

for tAðsi � e; siÞ; sAðsi; si þ eÞ: (This implies sign changes at zeros located in the open

interval ða; bÞ:)

Proof. Since yAY \f0g has exactly n � 1 zeros (1) is obvious.
To show (2) set

c ¼ inf jyðtÞj : tA½a; b�
[n�1

i¼1

Vi

-( )
;

where for i ¼ 1;y; n � 1 and Vi ¼ ðsi � e; si þ eÞ: Obviously c40: Suppose, to the
contrary, that there exists jAf1;y; n � 1g such that sjAða; bÞ and

yðtÞyðsÞ40;

where tAðsj � e; sjÞ and sAðsj; sj þ eÞ: Since Y is Haar there exists zAY \f0g such that

zðsiÞ ¼
sgnðyðsi � eÞÞ for si4a;

zðsiÞ ¼ sgnðyðsi þ eÞÞ for si ¼ a:

�

Let ẑ ¼ cz
2jjzjj: Note that

sgnððy � ẑÞðsj � eÞÞ ¼ �sgnððy � ẑÞðsjÞÞ ¼ sgnððy � ẑÞðsj þ eÞÞ

and therefore y � ẑ has two distinct zeros in ðsj � e; sj þ eÞ: Reasoning in the same

way, we can show that y � ẑ has at least one zero in each interval ðsi � e; si þ eÞ; for
iaj and siAð�1; 1Þ: (If si ¼ b; we consider ðb � e; b� and ½a; a þ eÞ if si ¼ a:) Hence
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y � ẑ has at least n distinct zeros in ½a; b�: Since y � ẑa0 this contradicts the Haar
condition. This proves (2). &

Lemma 5. Let YCX be an n-dimensional Haar space. Then there exists yAY such

that yðtÞ40 for all tA½a; b�:

Proof. If n ¼ 1; this is obvious. Assume nX2: First we show there exists wAY \f0g
such that wðtÞX0 for any tA½a; b�: To accomplish this let kAN and take wkAY such

that wkðaÞ ¼ 1 and wkðtk
i Þ ¼ 0 for

b � ð1=kÞ ¼ tk
1otk

2o?otk
n�1 ¼ b:

Set zk ¼ wk=jjwkjj: Since the unit ball in Y is compact, we can assume that
zk-wAY : It is clear that jjwjj ¼ 1 and wðtÞX0 on ða; bÞ: By continuity, wX0 in
½a; b�: Note that there exists toAða; bÞ such that wðtoÞ40: Again by continuity, there
exists an e40 such that

c ¼ inffwðtÞ : tAðto � e; to þ eÞg40:

If n is an odd number we define vAY by vðaÞ ¼ 1 and vðsiÞ ¼ 0 where

to � eos1os2o?osn�1oto þ e:

By Lemma 4 and by the Haar condition vðtÞ40 for tA½a; b�\ðto � e; to þ eÞ: Set
v̂ðtÞ ¼ cv

2jjvjj: Now put ŵ ¼ w þ v̂: By construction is clear that ŵðtÞ40 for any tA½a; b�:
If n is even, define vAY by vðaÞ ¼ vðbÞ ¼ 1 and vðsiÞ ¼ 0 where

to � eos1os2o?osn�2oto þ e:

We show that also in this case ŵ ¼ w þ cv
2jjvjj is strictly greater than 0 on ½a; b�: Observe

that ŵðtÞ40 for any tA½to � e; to þ e� by definition. If ŵðtÞp0 for some te½to �
e; to þ e�; then by the continuity of ŵ; nonnegativity of w; and definition of
v vðsn�1Þ ¼ 0 for some sn�1Aða; bÞ\½to � e; to þ e�: By Lemma 4 applied to v; vðbÞo0;
which leads to a contradiction. &

Theorem 6. For any nAN; let QnAPðHn;Hn�1Þ be a minimal projection such that

jjQnjj ¼ lðHn�1;HnÞ41:

Then for any nAN; Qn is an interpolating projection.

Proof. Since Hn is finite-dimensional, the set PðHn;Hn�1Þ is nonempty and a
minimal projection exists (see [12,15]).

Let QnAPðHn;Hn�1Þ be a minimal projection. Observe that any fAHn can be
represented in a unique way by

f ¼
Xn�1

k¼1

akðf Þhk þ anðf Þhn:
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Hence Hn�1 ¼ kerðanÞ: By Lemma 2, there exists ynAHn; anðynÞ ¼ 1 such that

Qnf ¼ f � anðf Þyn

for any fAHn: Now we show that yn has n � 1 different zeros in ½a; b�: Suppose this is
not true. First assume that yn is nonnegative in ½a; b�: Set

Vn ¼ fLALðHn;Hn�1Þ : LjHn�1
¼ 0g:

Since Qn is a minimal projection 0AVn is the best approximation to Qn in Vn: Now
take any ðx; x�ÞAEðQnÞ: Without loss, we can assume that x� ¼ t� for some tA½a; b�;
where t� denotes the evaluation functional at t: Hence

jjQnjj ¼ xðtÞ � anðxÞynðtÞ:
Since jjQnjj41; jjxjj ¼ 1 and ynðtÞ40; we have anðxÞo0: By Lemma 5 there exists
wAPn�1 such that wðtÞ40 on ½a; b�: For fAHn; set Lnf ¼ �anðf Þw: Observe that
LnAVn: Since anðxÞo0; ðLnxÞt ¼ �anðxÞwðtÞ40: By Theorem 3, 0 is not the best
approximation to Qn in Vn; which leads to a contradiction.

If yn is nonpositive in ½a; b�; the proof goes in the same manner as above (with
Lnf :¼ anðf Þw).

Now assume that ynðtÞynðsÞo0 for some s; tA½a; b�: Set
Z ¼ fxA½a; b� : ynðxÞ ¼ 0; yn changes sign passing through xg:

From the above we have 0ok ¼ cardðZÞon � 1: Without loss of generality we can
assume that Z ¼ fx1;y; xkg and

aox1ox2o?oxkob:

Since jjQnjj41 and jjðxiÞ�3Qnjj ¼ 1; for i ¼ 1;y; k there exists e40 such that

jjt�3QnjjojjQnjj for all tAV ¼
Sk

i¼1ðxi � e; xi þ eÞ and xk þ eob � e: Set

critðQnÞ ¼ ftA½a; b� : jjt�3Qnjj ¼ jjQnjjg: ð3Þ
Since jjQnjj41; ynðtÞa0 for any tAcritðQnÞ: Now we construct a function qnAHn�1

such that

ynðtÞqnðtÞo0 ð4Þ
for any tAcritðQnÞ: Without loss, we can assume that ynj½a;x1�X0: First suppose that

n � k is an odd number. Set znðaÞ ¼ 1; znðbÞ ¼ 0; znðxiÞ ¼ 0 for i ¼ 1;y; k and
znðujÞ ¼ 0 for j ¼ 1;y; n � 3 � k; if kon � 3: Here for j ¼ 1;y; n � 3 � k; ujA½a; b�
are so chosen that xkou1o?oun�3�koxk þ e: Since Hn�1 is an ðn � 1Þ-
dimensional Haar space, there exists exactly one znAHn�1 satisfying the above
conditions. Set

c ¼ inffjznðtÞj : tA½a; b�\ðV,ðb � e; b�Þg:
Observe that by the compactness argument c40: By Lemma 5 there exists wAHn�1

such that wðtÞ40 for any tA½a; b�: Set wn ¼ cw
2jjwjj and qn ¼ �ðzn þ wnÞ: By the

construction of qn; and Lemma 4 applied to qn; (4) is satisfied for any tAcritðQnÞ:
Now assume that n � k is an even number. Set znðaÞ ¼ 1; znðxiÞ ¼ 0 for i ¼ 1;y; k

and znðujÞ ¼ 0 for j ¼ 1;y; n � 2 � k; if kon � 2: Here for j ¼ 1;y; n � 2 � k;
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ujA½a; b� are so chosen that xkou1o?oun�2�koxk þ e: Put qn ¼ �zn: By the

construction of qn; and Lemma 4 applied to qn; (4) is satisfied for any tAcritðQnÞ:
Now define for fAHn

Lnf ¼ anðf Þqn:

Observe that LnAVn: Now take any ðx; t�ÞAEðQnÞ: It is obvious that tAcritðQnÞ:
Observe that

jjQnjj ¼ xðtÞ � anðxÞynðtÞ:

Since jjQnjj41 and jjxjj ¼ 1; anðxÞynðtÞo0: Hence ynðtÞa0: By the definition of qn;

ðLnxÞt ¼ anðxÞqnðtÞ40:

By Theorem 3, 0 is not the best approximation to Qn in Vn and consequently Qn is
not a minimal projection; a contradiction. This shows that yn has n � 1 different
roots in ½a; b�: Let us denote them by t1;y; tn�1: Define for fAHn

Znf ¼
Xn�1

j¼1

f ðtjÞlj;

where ljAHn�1 are so chosen that ljðtiÞ ¼ dij for i; j ¼ 1;y; n � 1: It is clear that Zn is

an interpolating projection from Hn onto Hn�1 and ZnðynÞ ¼ 0: Since QnðynÞ ¼ 0;
Qn ¼ Zn; which shows our claim. &

Theorem 7 (Compare with [12, Theorem 9]). For nAN; let PnCCR½a; b� denote the

space of all polynomials of degree pn: Then for any nX1 a minimal projection from Pn

onto Pn�1 is an interpolating projection. Moreover, lðPn�1;PnÞ41 for nX3:

Proof. Let for j ¼ 0;y; n and tA½a; b� pjðtÞ ¼ tj: If n ¼ 1 then the projection Q1

from P1 onto P0 given by Q1ðf Þ ¼ f ðða þ bÞ=2Þ1 is clearly an interpolating
projection of norm one. If n ¼ 2 then it is clear that the interpolating projection
from P2 onto P1 with the nodes at a and b has norm one.

Now assume nX3: Let QnAPðPn;Pn�1Þ be a minimal projection. Observe that any
fAPn can be represented in a unique way by

f ¼
Xn�1

k¼0

akðf Þpk þ anðf Þpn:

Hence Pn�1 ¼ kerðanÞ: By Lemma 2, there exists ynAPn; anðynÞ ¼ 1 such that

Qnf ¼ f � anðf Þyn

for any fAPn: First we show that jjQnjj41: Assume this is not true. Then by Lemma
1, 0 is the best approximation in kerðQnÞ ¼ span½yn� to any pAPn�1: Since anðynÞ ¼ 1;

ynðtoÞa0 for some toAða; bÞ: Let qoðtÞ ¼ ðb � aÞ2 � ðt � toÞ2: Since nX3; qoAPn�1:
Since ynðtoÞa0 it is easy to see that

jjqo � aynjjojjqojj
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for aAR sufficiently small, which leads to a contradiction. By Theorem 6 Qn is an
interpolating projection, as required. &

Now we consider the problem of uniqueness of minimal projections. The
proof of the next proposition is similar to that of [12, Theorem 10], (see also [28,
Theorem 4.8]).

Proposition 8. Let Hn;Hn�1 be as in Theorem 6. Let QnAPðHn;Hn�1Þ be a minimal

projection. Then critðQnÞ (see (3)) consists of at least n points.

Proof. Since Hn is finite-dimensional, critðQnÞa|: Assume that critðQnÞ ¼
ft1;y; tkg where kpn � 1: Let Rn be the interpolating projection determined by
t1;y; tk (if kon � 1 we add to ft1;y; tkgn � k � 1 points s1;y; sn�k�1 from ½a; b�).
Set Ln ¼ Qn � Rn: It is clear that LnAVn: Now take any ðx; t�ÞAEðQnÞ: It is obvious
that t ¼ ti for some iAf1;y; kg: Note that

ðLnxÞti ¼ ðQnxÞti � ðRnxÞti ¼ jjQnjj � xðtiÞXjjQnjj � 140:

By Theorem 3, 0 is not the best approximation to Qn in Vn; and consequently Qn is
not a minimal projection; a contradiction. &

Theorem 9. Let Hn and Hn�1 be as in Theorem 6. Then there is exactly one minimal

projection from Hn onto Hn�1:

Proof. Suppose that Qn and Rn are two different minimal projections. Then
obviously, Sn ¼ ðQn þ RnÞ=2 is also a minimal projection. Since jjSnjj41; by
Proposition 8, critðSnÞ consists of at least n different points t1;y; tn: Since Hn is
finite-dimensional, there exists x1;y; xnAHn; of norm one, such that

jjSnjj ¼ ðSnxiÞti

for i ¼ 1;y; n: Observe that for any iAf1;y; ng;

jjSnjj ¼ ðSnxiÞti ¼
ðQnxiÞti þ ðRnxiÞti

2
p
jjQnjj þ jjRnjj

2
¼ jjSnjj:

Hence for any i ¼ 1;y; n;

ðQnxiÞti ¼ ðRnxiÞti ¼ jjSnjj:

By Lemma 2, Qn is determined by yQAPn satisfying anðyQÞ ¼ 1 and Rn is determined

by yRAPn satisfying anðyRÞ ¼ 1: By the above equality, for any iAf1;y; ng;
jjSnjj ¼ xiðtiÞ � anðxiÞyQðtiÞ ¼ xiðtiÞ � anðxiÞyRðtiÞ:

Since jjSnjj41 and jjxijj ¼ 1; anðxiÞa0 for i ¼ 1;y; n: Consequently

yQðtiÞ ¼ yRðtiÞ

for i ¼ 1;y; n; which gives immediately yQ ¼ yR: Hence Qn ¼ Rn; a contra-

diction. &
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