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Abstract

Let H, be an n-dimensional Haar subspace of X = Cg[a, b] and let H,_; be a Haar subspace
of H, of dimension n — 1. In this note we show (Theorem 6) that if the norm of a minimal
projection from H, onto H,_; is greater than 1, then this projection is an interpolating
projection. This is a surprising result in comparison with Cheney and Morris (J. Reine Angew.
Math. 270 (1974) 61 (see also (Lecture Notes in Mathematics, Vol. 1449, Springer, Berlin,
Heilderberg, New York, 1990, Corollary II1.2.12, p. 104) which shows that there is no
interpolating minimal projection from Cla, b] onto the space of polynomials of degree <n,
(n=2). Moreover, this minimal projection is unique (Theorem 9). In particular, Theorem 6
holds for polynomial spaces, generalizing a result of Prophet [(J. Approx. Theory 85 (1996)
27), Theorem 2.1].
© 2004 Elsevier Inc. All rights reserved.
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1. The results

Let X be a Banach space and let Y = X be a closed, linear subspace. An operator
Pe #(X,7Y) is called a projection if P|, = idy. The set of all projections from X onto
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Y will be denoted by (X, Y). A projection P,e Z(X,Y) is called minimal if
[1Po|| = A(Y, X) = inf{[|P||: Pe 2(X, Y)}.

The constant A(Y, X) is called the relative projection constant. It is worth noting that
there exists a large number of papers concerning minimal projections. Mainly the
problems of existence [12,15], uniqueness [11,13,25,32,33], characterization of one-
complemented subspaces [1,2,26,30,31], concrete formulas for minimal projections
[3-7,10,12,21,22,24,29,34], estimates of the relative projection constants
[5,14,19,23,28,31,35], construction of spaces with large relative projection constants
[4,5,16-20], as well as the problems connected with shape-preserving projections [8,9]
were considered. For basic information concerning this topic the reader is referred to
[27].

The aim of this note is to generalize [29, Theorem 2.1] from the polynomial case to
the case of Haar subspaces. More precisely, let H, be an n-dimensional Haar
subspace of X = Cg[a,b] and H,_; = H, be an (n — 1)-dimensional Haar space. Let
{h_,»}j’.’:1 < H, be a fixed basis of H, such that H,_; = [h, ha, ..., h,—1]. In this note we
show that for any H,, H,_; as above if A(H,_, H,)> 1, then a minimal projection
from H, onto H,_; is an interpolating projection (Theorem 6). Moreover there is a
unique minimal projection in this case (Theorem 9). We start with two well known
lemmas. For sake of completeness the proofs will be included.

Lemma 1. Let X be a Banach space and let Y = X be a closed subspace. Suppose that
Pe?(X,Y). Then ||P|| =1, if and only if for any xeX(Ild — P)x is the best
approximation to x in V = ker(P).

Proof. Take a linear projection P from X onto Y of norm one. Then Id — P is a
linear projection onto ¥ = ker(P). Take xe X and ve V. Then
[lx = (Id = P)x|| = [|x — v — (1d = P)(x — o) [[<[|P]] []x — v][<[]x —v]].

Taking infimum over ve V' we get that dist(x, V) = ||x — (Id — P)x||.
To prove a converse, suppose ||P||> 1. Then for some xe X of norm one

[lx = (Id = P)x|| = [|Px[|>||x[| = [|> = Of];

a contradiction. [

Lemma 2. Let X be a normed space and let f € X*\{0}. Set Y = ker(f). Then for any
PeP(X,Y) there exists ype X, f(yp) = | such that

Px=x—f(x)yp
for any xeX.
Proof. Let Pe Z(X, Y). Take ypeker(P) such that f(yp) = 1. It is clear that for any
xeX

Px=x—f(x)yp.
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Conversely, for any yeX satisfying f(y) =1 the operator Q=1d —f(:)e
2(X,Y). O

Theorem 3 (see Odyniec and Lewicki [27, p. 102]). Let X be a finite-dimensional real
Banach space and let £ (X) denote the space of all linear operators from X into X.
Assume V"< X (X) is a linear subspace and Le ¥ (X)\V". Take Vo€V and define

E(L—V,)={(x,x")eSy x ext(Sx+) : x*(L — Vo)x = ||L — V5||.
Then V, is the best approximation to L in V" if and only if for any V € there exists
(x,x")e E(L — V,) such that

x*(Vx)<0.

We include the following two useful lemmas about Haar spaces. These basic facts
perhaps appear elsewhere but we present them with proofs for sake of completeness.

Lemma 4. Let Y<X be an n-dimensional Haar space. Let ye Y\{0} have n—1
distinct zeros a<s;<s;<---<s,_1<b. Then there exists ¢>0 such that for any
s;€(a,b) we have

[si — &, si+€elnlsj—e,5 +¢ =0 (1)
for i#j and
y(1)y(s)<0 (2)

for te(s; —&,8:), S€(8i,8; + ¢€). (This implies sign changes at zeros located in the open
interval (a,b).)

Proof. Since ye Y\{0} has exactly n — 1 zeros (1) is obvious.
To show (2) set

c= inf{|y(l)| : te[a,b]\U Vz}7
i1

where for i=1,...,n— 1 and V; = (s; — &, 5; + ¢). Obviously ¢>0. Suppose, to the
contrary, that there exists je {1, ...,n — 1} such that s;e(a,b) and

y()y(s)>0,
where 7€ (s; — ¢, ;) and se(s;,s; + ¢). Since Y is Haar there exists ze Y\{0} such that
sgn(y(s; —¢€)) for s;>a,
2(si) = {z(si) =sgn(y(s; +¢)) for s, =a.

Let 2 = zﬁz . Note that

sgn((y —2)(s; — &) = —sgn((y — 2)(s;)) = sgn((y — 2)(s; +¢))

and therefore y — Z has two distinct zeros in (s; — ¢,s; + ¢). Reasoning in the same
way, we can show that y — 7 has at least one zero in each interval (s; — ¢, s; + ¢), for
i#j and s;e(—1,1). (If s; = b, we consider (b —¢,b] and [a,a + ¢) if s5; = a.) Hence
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y — Z has at least n distinct zeros in [a, b]. Since y — Z#0 this contradicts the Haar
condition. This proves (2). [

Lemma 5. Let Y <X be an n-dimensional Haar space. Then there exists ye Y such
that y(t)>0 for all te|a,b].

Proof. If n = 1, this is obvious. Assume n>2. First we show there exists we Y\{0}
such that w(¢) >0 for any 7€ [a, b]. To accomplish this let ke N and take wy e Y such
that wy(a) = 1 and wi(#%) = 0 for

b—(1/k)=ti<tb<--<it  =b.
Set zx = wi/||wk||. Since the unit ball in Y is compact, we can assume that
zx—>we Y. It is clear that ||w|| =1 and w(#)=0 on (a,b). By continuity, w>=0 in

[a,b]. Note that there exists 7, € (a, b) such that w(#,)>0. Again by continuity, there
exists an ¢>0 such that

c=inf{w(t):te(t, — &1, +€)} >0.
If n is an odd number we define ve Y by v(a) = 1 and v(s;) = 0 where
lo —e<<H< - <§p 1 <Ilp+ &

By Lemma 4 and by the Haar condition v(z)>0 for te(a,b|\(t, — ¢, 1, +¢). Set
v(t) = 3oy Now put w = w + 4. By construction is clear that Ww(t)>0 for any t€[a, b].
If n is even, define ve Y by v(a) = v(b) = 1 and v(s;) = 0 where

o — < << <85 2<ly+&.

We show that also in this case w = w + 3ol is strictly greater than 0 on [a, b]. Observe
that (7)) >0 for any te[t, — ¢, 1, + ¢ by definition. If w(z)<0 for some ¢z, —
&1, + ¢, then by the continuity of W, nonnegativity of w, and definition of
v v(sy—1) = 0 for some s,_; € (a,b)\[t, — ¢, 1, + ¢]. By Lemma 4 applied to v, v(b) <0,
which leads to a contradiction. [

Theorem 6. For any neN, let Q,e ?(H,, H,_\) be a minimal projection such that
Ol = A(Hu—1, Hy)> 1.

Then for any neN, Q, is an interpolating projection.

Proof. Since H, is finite-dimensional, the set #(H,,H,_) is nonempty and a
minimal projection exists (see [12,15]).

Let 0,e#?(H,,H,_) be a minimal projection. Observe that any f€H, can be
represented in a unique way by

n—1
=" ac(f )i+ an(f)hn.
k=1
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Hence H,_, = ker(a,). By Lemma 2, there exists y, € H,, a,(y,) = 1 such that
Ouf =f —an(f)yn

for any f'e H,. Now we show that y, has n — 1 different zeros in [a, b]. Suppose this is
not true. First assume that y, is nonnegative in [a, b]. Set

Y, = {Le.f(Hn,Hn—l) L H_, = 0}

Since Q, is a minimal projection 0¥, is the best approximation to Q, in #~,,. Now
take any (x,x*)e E(Q,). Without loss, we can assume that x* = ¢* for some z€a, b,
where #* denotes the evaluation functional at 7. Hence

1@l = x(2) = @n(x)ya(2)-
Since ||Qy||>1, ||x|]| =1 and y,(¢) >0, we have a,(x)<0. By Lemma 5 there exists
we P,_; such that w(¢)>0 on [a,b]. For feH,, set L,f = —a,(f)w. Observe that
L,ev",. Since a,(x)<0, (L,x)t = —a,(x)w(t)>0. By Theorem 3, 0 is not the best
approximation to Q, in ¥, which leads to a contradiction.
If y, is nonpositive in [a, b], the proof goes in the same manner as above (with

L.f = a,(f)w).

Now assume that y,(¢)y,(s) <0 for some s, € [a, b]. Set

Z ={xe€la,b] : y,(x) =0, y, changes sign passing through x}.
From the above we have 0 <k = card(Z)<n — 1. Without loss of generality we can
assume that Z = {xy, ..., x;} and

a<x|<xy<---<xp<b.

Since ||Qy]|>1 and [[(x;)"°Qu|| =1, for i=1,...,k there exists ¢>0 such that
150 Qul| < || Qul| for all te V =&, (x; — &, x; + ¢) and x; + e<b — &. Set

crit(Qn) = {t€(a,b] : ||t"0ul| = ||Oull}- (3)

Since ||Qy||>1, yu(?) #0 for any tecrit(Q,). Now we construct a function ¢, € H,_,
such that

Ya()ga(t) <0 (4)
for any zecrit(Q,). Without loss, we can assume that yn\[a‘x]] >0. First suppose that
n—k is an odd number. Set z,(a) =1, z,(b) =0, z,(x;) =0 for i=1, ...,k and
zu(uj) =0forj=1,....n—3 —k,if k<n—3.Hereforj=1,....n — 3 — k, ujela, b
are so chosen that xy<wuj<--<u,_3_x<xi+eé Since H,; is an (n—1)-
dimensional Haar space, there exists exactly one z,e H,_; satisfying the above
conditions. Set

¢ =inf{|z,(?)| : t€la, B\(V L (b — &,b])}.
Observe that by the compactness argument ¢>0. By Lemma 5 there exists we H,,_;
such that w(z)>0 for any re[a,b]. Set w, = % and ¢, = —(z, + w,). By the
construction of ¢,, and Lemma 4 applied to g,, (4) is satisfied for any recrit(Q,).

Now assume that n — k is an even number. Set z,(a) = 1, z,(x;) = 0fori =1, ...,k
and z,(uj)) =0 for j=1,...,.n—2—k, if k<n—2. Here for j=1,...,.n—-2—k,
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ujela,b] are so chosen that xp<u;<--- <up_o_p<xr+e. Put ¢, =—z, By the
construction of ¢,, and Lemma 4 applied to ¢,, (4) is satisfied for any recrit(Q,).
Now define for fe H,

Lf = an(f)%w

Observe that L,e?",. Now take any (x,1*)e E(Q,). It is obvious that tecrit(Q,).
Observe that

1@l = x(2) = an(x)yu(2)-
Since ||Q,]|>1 and ||x|| = 1, a,(x)yn(¢) <0. Hence y,(¢) #0. By the definition of ¢,,
(Lyx)t = ay(x)gn(t) >0.

By Theorem 3, 0 is not the best approximation to Q, in ¥*, and consequently Q, is
not a minimal projection; a contradiction. This shows that y, has n — 1 different
roots in [a,b]. Let us denote them by 7y, ..., #,_;. Define for f'e H,

n—1
Zf =Y [,
=1

where /;e H,_; are so chosen that /;(t;) = d; fori,j = 1, ...,n — 1. Itis clear that Z, is
an interpolating projection from H, onto H,_; and Z,(y,) = 0. Since Q,(y,) =0,
0, = Z,, which shows our claim. [

Theorem 7 (Compare with [12, Theorem 9]). For neN, let P,< Cgla,b] denote the
space of all polynomials of degree <n. Then for any n>=1 a minimal projection from P,
onto P,_, is an interpolating projection. Moreover, A(P,_1,P,)>1 for n=3.

Proof. Let for j=0,...,n and t€a,b] pj(r) =¢. If n=1 then the projection O,
from P; onto Py given by QOi(f) =f((a+5b)/2)1 is clearly an interpolating
projection of norm one. If n =2 then it is clear that the interpolating projection
from P, onto P; with the nodes at ¢ and b has norm one.

Now assume n>3. Let O, € #(P,, P,_) be a minimal projection. Observe that any
f€P, can be represented in a unique way by

n—1
f = Z ak(f)pk + ai1(f)pn~
=0

Hence P, = ker(a,). By Lemma 2, there exists y, € P,, a,(y,) = 1 such that
Ouf =f —an(f)yn

for any f'€ P,. First we show that ||Q,|| > 1. Assume this is not true. Then by Lemma
1, 0 is the best approximation in ker(Q,) = span[y,| to any pe P,_;. Since a,(y,) = 1,
yu(2o) #0 for some to€(a,b). Let go(1) = (b — a)* — (t — 1,)*. Since n=3, go€ P,_1.
Since y,(#,)#0 it is easy to see that

190 — oyull <llgol|
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for ae R sufficiently small, which leads to a contradiction. By Theorem 6 Q, is an
interpolating projection, as required. [

Now we consider the problem of uniqueness of minimal projections. The
proof of the next proposition is similar to that of [12, Theorem 10], (see also [28,
Theorem 4.8)).

Proposition 8. Let H,, H,_| be as in Theorem 6. Let Q,,€ ?(H,, H,_|) be a minimal
projection. Then crit(Q,) (see (3)) consists of at least n points.

Proof. Since H, is finite-dimensional, crit(Q,)#0. Assume that crit(Q,) =
{t1, ..., tx} where k<n — 1. Let R, be the interpolating projection determined by
ty ..., tx (fk<n—1weaddto {r,...,15x}n — k — 1 points sy, ..., s, from [a, b]).
Set L, = O, — R,. Tt is clear that L, 7",. Now take any (x,*)e E(Q,). It is obvious
that r = ¢; for some ie{l, ...,k}. Note that

(Lnx)ti = (Qnx)ti = (Ryx)t; = || Onl| — x(1;) = | Qul| = 1>0.
By Theorem 3, 0 is not the best approximation to Q, in ¥, and consequently Q,, is

not a minimal projection; a contradiction. [J

Theorem 9. Let H, and H,_| be as in Theorem 6. Then there is exactly one minimal
projection from H, onto H, .

Proof. Suppose that Q, and R, are two different minimal projections. Then
obviously, S, =(Q,+ R,)/2 is also a minimal projection. Since [|S,||>1, by

Proposition 8, crit(S,) consists of at least n different points ¢y, ...,t,. Since H, is
finite-dimensional, there exists xy, ..., x, € H,, of norm one, such that
|[Sul] = (Suxi)t;

for i =1, ...,n. Observe that for any ie{l, ...,n},

(Onxi)ti + (Rnxi)fi<||Qn|| + || Ral|

||Sn|| = (Sﬂxi>ti = 2 = 2

= [[Sull-

Hence for any i =1, ..., n,
(Onxi)ti = (Ruxi)t; = ||Snl]-

By Lemma 2, Q, is determined by yo € P, satisfying a,(yo) = 1 and R, is determined
by yre P, satisfying a,(yg) = 1. By the above equality, for any ie {1, ...,n},

|[Snl| = xi(t;) — an(xi)yQ(ti) = xi(t;) — an(x;)yr(t:).

Since ||S,||>1 and ||x;]| = 1, a,(x;)#0 for i = 1, ..., n. Consequently
yo(ti) = yr(t:)
for i=1,...,n, which gives immediately yo = yr. Hence O, = R,; a contra-

diction. O
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